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Abstract:  We consider in this paper the application of stationary iterative methods; the Jacobi, the Gauss-Seidel and the SOR 

iterations for solving linear algebraic systems. The formulae of the three methods are derived from the general 

form of matrix decomposition. The rates of convergence of these methods are tested with examples and their 

execution times are examined in relation to the structure of their iteration matrices. The results show the 

differences in the rates of convergence and execution times. 
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Introduction 

Iterative methods are methods which find successive 

approximations from a given initial approximation to a given 

linear system of equations. Iterative methods were developed 

for solving large sparse linear systems arising from finite-

difference discretization of partial differential equations, 

linear equations for linear least-squares problems  as well as 

systems of linear inequalities  arising from linear 

programming. They can as well be applied in the solution of 

nonlinear systems of equations (Kelly, 1995; Smith, 2004; 

Bamigbola & Ibrahim, 2014). 

Similarly, in modern computing, the locality of a program's 

data can significantly affect its performance. For instance, 

some reordering transformation can improve the data locality 

for stationary iterative methods such as Gauss-Seidel method 

for solving linear systems with sparse coefficient matrix 

(Stout et al., 2004). 

There are broadly two classes of iterative methods: stationary 

and non-stationary methods. The stationary methods include 

the Jacobi, the Gauss-Seidel the Successive Over-relaxation 

(SOR) and the Symmetric Successive Over-relaxation (SSOR) 

iterations while the non-stationary methods include the 

Conjugate Gradient method (CGM), the Bi-  

Conjugate Gradient method (BCGM), the Minimal Residual 

method (MINRES), the Generalized Minimal Residual 

method (GMRES) and several other methods with their 

variants (Saad, 2000). 

The Jacobi, the Gauss-Seidel the Successive-over-relaxation 

(SOR) and the Symmetric Successive Over-relaxation (SSOR) 

iterations are mostly applied in the solution linear algebraic 

system of equations. 

Linear algebraic systems are usually of the form; 

 

 
  

Usually, arising from real life problems whose solution is of 

paramount importance. The above system (1.1) can be written 

more compactly as; 

𝐴𝑥 = 𝑏                                 (2) 
 

The method is best suited for a linear system whose 

coefficient matrix is a band matrix. Again, the choice of 

iterative method depends on the structure of the coefficient 

matrix 𝐴 

The Jacobi, Gauss-Seidel and the SOR methods are 

guaranteed to converge to the exact solution if the coefficient 

matrix is diagonally dominant (Kelly, 1995; Saad, 2000).  

 

Iterative Methods 

The use of iterative methods requires that the coefficient 

matrix 𝐴 be of the form 𝐴 = 𝑃 − 𝑄 where 𝑃 is invertible. 

Thus the linear system (1.1) becomes;  

𝑃𝑥 = 𝑄𝑥 + 𝑏                                 (3) 
which yields the iterative scheme  

𝑥(𝑘+1) = 𝑃−1𝑄𝑥(𝑘) + 𝑃−1𝑏        (4) 
and 𝑃−1𝑄 is called the iteration matrix.   

Splitting 𝐴 into its strictly lower triangular matrix 𝐿, diagonal 

matrix 𝐷and strictly upper triangular matrix 𝑈 we have;  

𝐿 = {
𝑎𝑖𝑗          𝑖 > 𝑗         

0          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

D= {
𝑎𝑖𝑗          𝑖 = 𝑗         

0          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

𝑈 = {
𝑎𝑖𝑗          𝑖 < 𝑗         

0          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

Thus (1.1) becomes;  

(𝐿 + 𝐷 + 𝑈)𝑥 = 𝑏             (5) 
 

Definition 1: A square matrix is called singular if its 

determinant is zero (Brownson, 1989). 

 

Lemma 1: The determinant of a square matrix is zero if it has 

at least a zero row or a zero column (Brownson, 1989). 

Jacobi iteration 

The Jacobi method involves using a current approximation 

𝑥(𝑘) where 𝑥(𝑘) = (𝑥1
(𝑘)
, 𝑥2
(𝑘)
, 𝑥3
(𝑘)
, . . . , 𝑥𝑛

(𝑘)
) in each of the 

n  equations to find the next approximation. That is, the 

current values 𝑥2
(𝑘)
, 𝑥3
(𝑘)
, … , 𝑥𝑛

(𝑘)
  are used to find a new value 

𝑥1
(𝑘+1)

. Similarly the current values 𝑥1
(𝑘)
, 𝑥3
(𝑘)
, … , 𝑥𝑛

(𝑘)
 are 

used in the second equation to obtain a new value 𝑥2
(𝑘+1)

such 

that in the 𝑖𝑡ℎ equation, current values of 

𝑥1
(𝑘)
, 𝑥2
(𝑘)
, … 𝑥𝑖−1

(𝑘)
, 𝑥𝑖+1
(𝑘)
 . . . , 𝑥𝑛

(𝑘)
  are used in the equation to 

find the new value 𝑥𝑖
(𝑘+1)

. That is given current values 𝑥(𝑘) =

(𝑥1
(𝑘)
, 𝑥2
(𝑘)
, 𝑥3
(𝑘)
, . . . , 𝑥𝑛

(𝑘)
) we find new values for 𝑥(𝑘+1) =

(𝑥1
(𝑘+1)

, 𝑥2
(𝑘+1)

, 𝑥3
(𝑘+1)

, . . . , 𝑥𝑛
(𝑘+1)

).  
In essence, Jacobi method is; 
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and simplifies to; 

𝑥(𝑘+1) =
1

𝑎𝑖𝑖
(−∑𝑎𝑖𝑗𝑥𝑗

(𝑘)

𝑖−1

𝑗=1

− ∑ 𝑎𝑖𝑗𝑥𝑗
(𝑘)

𝑛

𝑗=𝑖+1

+ b)     (6) 

which is expressed as  

𝑥(𝑘+1) = −𝐷−1(𝐿 + 𝑈)𝑥(𝑘) + 𝐷−1𝑏 

This is the Jacobi iterative method.  This can be expressed as;  

𝑥(𝑘+1) = 𝑇𝑥(𝑘) + 𝑐 (Kreyszig, 2011) 
Where 𝑇 = −𝐷−1(𝐿 + 𝑈)  is the iteration matrix 

  

Thus; 

𝐿 + 𝑈 = {
𝑎𝑖𝑗                 𝑖 ≠ 𝑗

0              𝑖 = 𝑗
, 

 

D= {
𝑎𝑖𝑗             𝑖 = 𝑗        

0              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, 

 

𝐷−1 = {

𝑎𝑖𝑗  

𝑎𝑖𝑖  
           𝑖 ≠ 𝑗        

0              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

Lemma 1: If a row or a column of a square matrix is zero, 

then its determinant is zero (Brownson, 1989). 

 

Lemma 2: If the determinant is zero, then the matrix is 

singular (Brownson, 1989). 

Theorem: The iteration matrix of the Jacobi scheme is non-

singular (Strong, 2004). 

The Jacobi iteration is guaranteed to converge when the 

coefficient matrix is diagonally dominant i.e.  

∑|𝑎𝑖𝑗| < |𝑎𝑖𝑖|

𝑛

𝑗=1
𝑗≠𝑖

                                   (7) 

  

Gauss-Seidel iteration 

The Gauss-Seidel iterative scheme is an improvement over the 

Jacobi method. Unlike the Jacobi scheme, the computed 

𝑥𝑖−1
(𝑘+1)

 values are used to obtain 𝑥𝑖
(𝑘+1)

 values since they are 

better approximations to the exact solution than the 𝑥𝑖−1
(𝑘+1)

 

values. The Gauss-Seidel scheme is derived as which implies 

that taking i = 1, 2, 3, …, n, we have; 

 

 

 
 

That is;                

𝑥(𝑘+1) =
1

𝑎𝑖𝑖
(−∑𝑎𝑖𝑗

𝑖−1

𝑗=1

𝑥𝑗
(𝑘+1)

− ∑ 𝑎𝑖𝑗

𝑛

𝑗=𝑖+1

𝑥𝑗
(𝑘)
+ 𝑏)   (8) 

 
Thus we have; 

𝑥(𝑘+1) = 𝐷−1{−𝐿𝑥(𝑘+1) −𝑈𝑥(𝑘) + 𝑏} 

Since 𝐷𝐷−1 = 𝐼, the identity matrix, equation (14) yield 

(𝐿 + 𝐷)𝑥(𝑘+1) = −𝑈𝑥(𝑘) + 𝑏 

𝐿𝑥(𝑘+1) + 𝐷𝑥(𝑘+1) = −𝑈𝑥(𝑘) + 𝑏 

𝑥(𝑘+1) = −(𝐿 + 𝐷)−1𝑈𝑥(𝑘) +−(𝐿 + 𝐷)−1𝑏 

𝐺 = −(𝐿 + 𝐷)−1𝑈and𝛽 = −(𝐿 + 𝐷)−1𝑏  then we 

 

 𝑥(𝑘+1) = 𝐺𝑥(𝑘) + 𝛽                        (9) 
 

The SOR iteration 

Consider the linear system (1.2) and from (2.3) we have; 

𝜔(𝐿 + 𝐷 + 𝑈)𝑥 = 𝜔𝑏 
(𝐿 + 𝐷)𝑥 = −𝑈𝑥 + 𝑏 

𝜔(𝐿 + 𝐷)𝑥 = −𝜔𝑈𝑥 + 𝜔𝑏 

0 = −𝜔𝐿𝑥 − 𝜔𝐷𝑥 − 𝜔𝑈𝑥 + 𝜔𝑏 

 

Adding 𝐷𝑥 to both sides and simplifying yields; 

 
 

Multiplying through by 𝐷−1; 

 
This scheme is a generalization of the Gauss-Seidel iteration 

with the introduction of the relaxation parameter ω to speed 

up convergence. Indeed, if 𝜔 = 1, (11) reduces to Gauss-

Seidel iteration. 

Numerical examples 

In this section, we consider the application of the three 

iterative schemes discussed to linear algebraic systems. From 

the results obtained, the number of iterations and the computer 

execution time for each problem in Table 1 is shown in Table 

2. 

 

Table 1: The problems 
S/N Matrix 𝑨 Vector  𝒃 Dimension 

1 

(

  
 

7   2   0  0   0…  0
1     7    2   0  0 … 0  
0    1    7   2  0  …  0
………………… . .
……………………
0  0  0  … 0  1    7  )

  
 

 

(

  
 

9
10
…
…
10
9 )

  
 

 

(50𝑋50) 

2 

(

  
 

8   1   0  0   0…  0
1    8   1   0  0 …0  
0    1   8   1  0  …  0
………………… . .
……………………
0  0  0  … 0 1   8 )

  
 

 

(

  
 

0.9
1
…
…
1
0.9)

  
 

 

(75𝑋75) 
 

3 

(

  
 

4     − 1      0     0      0…  0
 −1       4  − 1     0      0 …  0   
   0   − 1       4  − 1    0 …  0 

………………… . .
……………………

0     0       0  …  0  − 1    4 )

  
 

 

(

  
 

3
2
…
…
2
3)

  
 

 

(125𝑋125) 
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Table 3.2: The solutions 

S/N 

Jacobi Gauss-Seidel SOR 

Solution Iter. No. CPU Time Solution Iter. No. CPU Time Solution Iter. No. CPU Time 

1 

(

 
 
 
 

0.9999
0.9998
0.9998
…

0.9998
0.9999
1.0000)

 
 
 
 

 

10 0.0452 

(

 
 
 
 

1.0001
1.0001
1.0001
…

1.0001
1.0001
1.0001)

 
 
 
 

 

7 0.0331 

(

 
 
 
 

1.0002
1.0002
1.0002
…

1.0002
1.0002
1.0002)

 
 
 
 

 

7 0.0277 

2 

(

 
 
 
 

0.1000
0.1000
0.1000
…

0.1000
0.1000
0.1000)

 
 
 
 

 

7 0.0893 

(

 
 
 
 

0.1000
0.1000
0.1000
…

0.1000
0.1000
0.1000)

 
 
 
 

 

5 0.0662 

(

 
 
 
 

0.1000
0.1000
0.1000
…

0.1000
0.1000
0.1000)

 
 
 
 

 

5 0.0649 

3 

(

 
 
 
 

0.9999
0.9998
0.9998
…

0.9999
0.9999
1.0000)

 
 
 
 

 

10 0.1133 

(

 
 
 
 

1.0000
0.9997
0.9998
…

0.9999
1.0000
1.0000)

 
 
 
 

 

7 0.0826 

(

 
 
 
 

0.9999
0.9999
0.9999
…

0.9999
1.0000
1.0000)

 
 
 
 

 

7 0.0817 

 

 

Discussion of Results 

The three methods explored in this paper were tested with 

three different linear systems of equations of varying sizes. 

The results show that while the Jacobi method converges after 

ten iterations in example 1, seven iterations in example 2 and 

ten iterations in example 3, both the Gauss-Seidel and the 

SOR converge after seven iterations in example 1, five 

iterations in example 2 and seven iterations in example 3.  

Thus, both the Gauss-Seidel and the SOR converge faster than 

the Jacobi method in terms of number of iterations and 

execution time. Again, though Gauss-Seidel and the SOR 

converge at the same number of iterations in the given 

examples, the SOR converges faster in terms of execution 

time.  
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